Optical emission spectroscopy in electric arc furnaces and ladle furnaces – from laboratory to industrial applications

Dr. <u>Henri Pauna¹</u>, Dr. Matti Aula¹, Prof. Marko Huttula², Prof. Timo Fabritius¹

¹Process Metallurgy Research Unit ²Nano and Molecular Systems Research Unit University of Oulu, Finland

Process metallurgy research unit

Approximately 35 researchers (picture from 2019)

RESEARCH FOCUS AREAS

- Reducing agents and reduction metallurgy
- II. Primary and secondary metallurgy
- III. Recycling and sustainable metallurgical processes
- IV. New measurement and treatment methods in metallurgy
 - Microwaves, laser-based methods, optical emission and Raman spectroscopy

(scientific results during last three years)

(2 PhD, 5 M.Sc., approx. 20 pubs) (3 PhD, 5 M.Sc., approx. 25 pubs)

- (1 PhD, 4 M.Sc., approx. 25 pubs)
- (2 PhD, 3 M.Sc., approx. 30 pubs)

Characterization of the electric arc

- Temperature of the plasma
- Electron density of the plasma
- Local thermodynamic equilibrium (LTE) assessment
- Electric arc image analysis

Online process control

- Online slag composition analysis
 - Slag components in the spectra:
 - Cr, Fe, Ca, Mg, Mn, Al, Si, Ni, V, Ti
 - Also Na, K, Rb, Cs, Li, N, O, C, H
- Process condition monitoring

Measurements have been conducted in

- Laboratory (NANOMO, KTH)
- Pilot-scale (RWTH Aachen)
- Industrial electric arc furnaces and ladle furnaces

Schematic illustrations of the OES setups for

- a) laboratory scale (can also be a closed chamber),
- b) pilot-scale,
- c) industrial ladle furnace, and
- d) industrial electric arc furnace

The high energy of the electric arc forms plasma

- Plasma consists of both charged and neutral particles (electrons, ions, atoms, molecules, etc.)
- The plasma contains material from the molten bath, atmosphere, and electrodes
 - There's a variety of different particles inside the arc

Huge amount of particles radiate inside the arc with their characteristic wavelengths

- Hundreds of emission lines are observed in the arc

The origins of the emission lines can be identified

- Few examples: Cr, Mg, Na, H, N, Ca, C

550

600

650

700

750

Wavelength (nm)

800

850

900

950

4

6

500

Intensity (a.u.)

Case study: laboratory arc spectra

CN

 $\times 10^4$

Optical emissions from the slag components

Molecular optical emissions

 C_2

mM

Case study: pilot-scale AC EAF

Pilot-scale EAF at Aachen (Germany) [2]

- Pilot-scale AC EAF

- Capacity 200 kg, 2 graphite electrodes
- Three spectrometers (AVASPEC) and single-lens
 <u>reflex camera</u> (Baumer)
 - Located on top of the furnace
 - Spectrometers from Luxmet (Oulu)

Case study: pilot-scale data

Arc length

Area on slag surface

Electrical data of the furnace

Plasma temperature with Cr I lines

Electron density with Ca I and Ca II lines

Case study: CN recombination in plasma

Molecular optical emissions from CN have been highlighted with red color

View into the pilot-scale AC furnace (camera and spectrometers at the furnace roof)

OES studies in industrial furnaces

Electric arc furnace

- Process condition monitoring
- Radiative heat transfer in different steel grades
- Plasma analytics
- Slag component evaluation

Ladle furnace

- Slag composition analysis (focus has been on MgO, MnO, CaF₂, CaO)
- Manuscript: molecular optical emissions from CaO and CaF

போ

Drilling/boring

- Electrodes are lowered
- Heat radiation from the melting material is observed

Beginning of the formation of the molten bath

- Electrodes are at their lowest position
- Solid charge material blocks the view to the arc
- Alkali emission lines are observed in the spectrum (Na, K)

Main heating period

- Intensity of the observed light increases
 - Especially for heat radiation
- The solid charge material still blocks the view to the arc

Down-melting period

- Most of the solid charge material is molten
- Electric arc can be observed momentarily or constantly
- Slag components can be identified

 $\times 10^{7}$

Mum

600

5

4

3

2

 \bigcap

500

Intensity (a.u.)

Heating/flat bath period

- End of the melting process
- Solid charge material is completely molten

mmm

800

700

Wavelength (nm)

- The electric arc spectra are observed clearly
 - composition evaluation

Time evolution

Emission line ratios vs. XRF slag composition

Molecular optical emissions

Potential future topics for OES reserach

Hydrogen applications

- Hydrogen flames, plasmas
- Process condition monitoring
 - Arc characteristics from the spectra
 - Plasma temperature
 - Detection of impurities

Burners

- Flame spectroscopy
- Process condition monitoring
 - Flame temperature
 - Detection of impurities

Continuation of electric arc furnace and ladle furnace research

- Online slag composition analysis
- Process condition monitoring

v Summary

Optical emission spectroscopy in EAF and LF

- Realtime data acquisition
 - Up to several tens of spectra per second (limited only by how fast the data analysis is)
- Fast analysis times
 - Requires that emission line selection has been done efficiently!
- Potentially viable solution for on-line *in situ* slag compotision analysis
- A tool for process control
 - Arc characterization with
 - Plasma temperature
 - Electron density
 - Local thermodynamic equilibrium
 - Radiative heat transfer from the spectra
 - Evaluation of molten bath temperature
 - Evaluation of melting of the solid charge material

<u>References</u>

[1] C. Aragón and J. A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods, Spectrochimica Acta Part B, 63: 893-916 (2008).

[2] H. Pauna et al., Pilot-scale AC electric arc furnace plasma characterization, Plasma Research Express, 1(3): 035007 (2019).

[3] H. Pauna et al., Optical emission spectroscopy as an on-line analysis method in industrial electric arc furnaces, Steel Research International, 91(11): 2000051 (2020).

[4] H. Pauna et al., Industrial Ladle Furnace Slag Composition Analysis with Optical Emissions from the Arc, ISIJ International, 60(9): 1985-1992 (2020).

[5] A. A. Bol'shakov et al., Spectral emission enhancement by an electric pulse for LIBS and LAMIS, Journal of Analytical Atomic Spectrometry, 32: 657-670 (2017).